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Abstract

This work is a critique to a paper published in the International Journal of Heat and Mass Transfer 48 (2005) 4460–4466, which con-
cerns the boundary layer flow of an electrically conducting incompressible fluid over a heated stretching sheet. The flow is permeated by a
uniform transverse magnetic field and the fluid viscosity is assumed to vary as a linear function of temperature. In the published paper the
calculation domain was small and the temperature profiles are truncated. Although the dynamic viscosity has been considered a function
of temperature and consequently variable inside the boundary layer the Prandtl number, which depends on viscosity, has been considered
constant inside the boundary layer. The results of the present work are obtained with the direct numerical solution of the boundary layer
equations taking into account both viscosity and Prandtl number variation across the boundary layer. The temperature profiles of the
present work are quite different from those of the above work.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of forced convection along an isothermal
constantly moving plate is a classical problem of fluid
mechanics that has been solved for the first time in 1961
by Sakiadis [2]. Thereafter, many solutions have been
obtained for different aspects of this class of boundary
layer problems. Mukhopadhyay et al. [1] in a recent paper
treated the MHD problem along a linearly stretching sheet
considering that the fluid viscosity varies as a linear func-
tion of temperature. The authors applied a very interesting
scaling group of transformations to the governing equa-
tions and after finding two absolute invariants they derived
a third order ordinary differential equation corresponding
to momentum equation and a second order ordinary differ-
ential equation corresponding to energy equation. After-
wards the equations were solved numerically. However in
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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this paper there is an omission and two disadvantages.
The omission is that the presented method has not been
validated with comparison to existing results. This led to
the first disadvantage that all the presented temperature
profiles are wrong. The authors treated in a suitable man-
ner the variation of viscosity with temperature in the
momentum equation but this has not been done in the
energy equation and this is the second disadvantage. For
these reasons we resolved the above problem with the
direct numerical solution of the boundary layer equations
without any transformation. Our arguments will be con-
firmed below.

2. The mathematical model

Consider laminar flow along a flat plate with u and v

denoting, respectively, the velocity components in the x

and y direction, where x is along the plate and y is the coor-
dinate perpendicular to x. For steady, two-dimensional
flow the equations including variable viscosity are [1]
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Nomenclature

Bo strength of magnetic field
f stream function
M Hartmann number
Pr Prandtl number
Rex Reynolds number
T temperature
u horizontal velocity
v vertical velocity
x horizontal coordinate
y vertical coordinate

Greek symbols

g similarity variable
h dimensionless temperature

j thermal diffusivity
l dynamic viscosity
m kinematic viscosity
q density
r electrical conductivity

Subscripts

a ambient
w wall

Fig. 1. The flow configuration and coordinate system.

A. Pantokratoras / International Journal of Heat and Mass Transfer 51 (2008) 104–110 105
Continuity equation:
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where q is the fluid density (assumed constant), l is the
fluid dynamic viscosity, r is conductivity of the fluid, Bo

is the strength of the magnetic field, T is the fluid temper-
ature and j is the fluid thermal diffusivity. The boundary
conditions are as follows:

at y ¼ 0 u ¼ uw ¼ cx; v ¼ 0; T ¼ T w ð4Þ
as y !1 u! 0; T ! T a ð5Þ

where c is a constant and Ta is the ambient medium
temperature.

The dynamic viscosity is assumed to be a linear function
of temperature given by the following equation [1]:

l ¼ la½aþ bðT w � T Þ� ð6Þ

where la is the ambient fluid dynamic viscosity and a and b

are constants.
Eqs. (1)–(3) represent a two-dimensional parabolic flow.

Such a flow has a predominant velocity in the streamwise
coordinate (unidirectional flow) which in our case is the
direction along the plate. The equations were solved
directly, without any transformation, using the finite differ-
ence method of Patankar [3]. The solution procedure starts
with a known distribution of velocity and temperature at
the plate edge (x = 0) and marches along the plate. At
the leading edge the temperature was taken uniform and
equal to ambient one and the velocity was also uniform
with a very small value. At each downstream position the
discretized equations are solved using the tridiagonal
matrix algorithm (TDMA). The cross-stream velocities v

were obtained from the continuity equation. The forward
step size Dx was 0.001 mm and we used a nonuniform lat-
eral grid with 500 points where Dy increases along y. In the
numerical solution of the boundary layer problems the cal-
culation domain must always be at least equal or wider
than the boundary layer thickness. However, it is known
that the boundary layer thickness increases with x. There-
fore, it would be desirable to have a grid which conforms
to the actual shape of the boundary layer. For that reason
the calculation domain must always be at least equal or
wider than the boundary layer thickness. In this work an
expanding grid has been used (Fig. 1) according to the fol-
lowing equation:

yout ¼ yo þ cx ð7Þ

where yout is the outer boundary of the calculation domain,
c is the spreading rate of the outer boundary and x is the
distance at the current step. In each case we tried to have
a calculation domain wider than the real boundary layer
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thickness. This has been done by trial and error. If the cal-
culation domain was thin the velocity and temperature pro-
files were truncated. In this case we used another wider
calculation domain in order to capture the entire velocity
and temperature profiles. This has been done by changing
the coefficient c in Eq. (7). An analogue iterative procedure
has been used by Cortell [4,5] to obtain temperature and
velocity profiles along a stretching sheet. The technique
used by Cortell was applied to the transformed equations.

The results are grid independent. The parabolic solution
procedure is a well known solution method and has been
used extensively in the literature. It appeared for the first
time in 1970 [6] and has been included in classical fluid
mechanics textbooks (see p. 275 in White [7]). Anderson
et al. [8] mention seven numerical methods for the solution
of the boundary layer equations (p. 364) and among them
is the ‘‘well known Patankar–Spalding method”. The
method is fully implicit and can be applied to both similar
and nonsimilar problems. The dynamic viscosity l and the
Prandtl number, which is a function of viscosity, have been
considered variable during the solution procedure. A
detailed description of the solution procedure, with vari-
able thermophysical properties, may be found in [9].
3. Results and discussion

The governing parameters of this problem is the viscos-
ity parameter A, the Hartmann number M and the similar-
ity variable g defined as [1]

A ¼ bðT w � T aÞ ð8Þ
rB2

0

q
¼ cM2 ð9Þ

g ¼ m�1=2
a c1=2y ¼ y

x
Re1=2

x ð10Þ

where ma is the ambient fluid kinematic viscosity and Rex is
local Reynolds number defined as

Rex ¼
uwx
ma

ð11Þ

It should be noted here that when A = 0 the fluid viscosity
is constant.

Mukhopadhyay et al. [1] transformed Eqs. (1)–(3) into
the following ordinary differential equations:
Table 1
Comparison of the present method results with those existing in the literature

Pr h 0(0)

Chiam
[10]

Carragher and
Crane [11]

Grubka and
Bobba [12]

Present
method

0.023 �0.022489 �0.0240
0.10 �0.091292 �0.0925
1.0 �0.581977 �0.5820
0.7 �0.46 �0.4543

10.0 �2.3080 �2.3080
f 02 � ff 00 ¼ �Ah0f 00 þ ðaþ A� AhÞf 000 �M2f 0 ð12Þ
h00 þ Prf h0 ¼ 0 ð13Þ

where h is the dimensionless temperature

hðgÞ ¼ T � T a

T w � T a

ð14Þ

and f 0 is the dimensionless velocity

f 0ðgÞ ¼ u
uw

ð15Þ

In the transformed energy equation (13) the Prandtl num-
ber appears. Mukhopadhyay et al. [1] solved Eqs. (12) and
(13) considering the Prandtl number constant and equal to
ambient Prandtl number given by the following equation:

Pra ¼
ma

j
ð16Þ

However, the Prandtl number is a function of viscosity and
as viscosity varies across the boundary layer, the Prandtl
number varies, too (see Fig. 10). For example the Prandtl
number at the plate surface is

Prw ¼
mw

j
ð17Þ

This disadvantage will be discussed later.
In order to test the accuracy of our method, results were

compared with those available in the literature. The wall
heat transfer h0(0) and the wall shear stress f 00(0) defined as

h0ð0Þ ¼ x
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ðRexÞ�1=2 oT
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ð18Þ

f 00ð0Þ ¼ lw

qu2
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ð19Þ

are shown in Table 1. The comparison is satisfactory.
It should be noted that for the case A = 0 (constant vis-

cosity) and M = 0 there are analytical solutions for the
velocity and temperature profiles. The velocity profiles
are given by Gupta and Gupta [13]

f 0ðgÞ ¼ e�g ð20Þ

and are independent of the Prandtl number. The tempera-
ture profiles are given by Chiam [10]

hðgÞ ¼ 1�
R g

0
exp½�Prðnþ e�nÞ�dnR1

0
exp½�Prðnþ e�nÞ�dn

ð21Þ
for A = 0 (constant viscosity)

f 00(0)

Chiam
[10]

Carragher and
Crane [11]

Grubka and
Bobba [12]

Present
method

�1.0050
�1.0050
�1.0050

�1.0 �1.0050
�1.0 �1.0050
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The following figures correspond to those presented by
Mukhopadhyay et al. [1] (with the same captions) where
we included our results and some analytical solutions. In
Fig. 2 velocity profiles are shown for Pra = 0.1, M = 0
and two values of the viscosity parameter A. At the same
figure the analytical solution is shown for A = 0. The veloc-
ity profile of our method for A = 0 is identical with the
analytical solution and this is another proof that our meth-
Fig. 2. Distribution of velocity against n when M = 0 and Pra = 0.1: solid
line, present work: dashed line, [1].

Fig. 3. Distribution of temperature against n when M = 0 and Pra = 0.1:
solid line, present work: dashed line, [1].
od gives accurate results. It is also seen that the profiles of
our method and those by Mukhopadhyay et al. [1] compare
well and the same happens with the velocity profiles shown
in Fig. 4. In Figs. 3, 5, 6 and 7 temperature profiles are
shown for different values of Pra, M and A. In Figs. 3, 5
and 7 the temperature profiles derived by the analytical
solution of Chiam [10] for A = 0 and M = 0 have been also
included. We see that our temperature profiles compare
Fig. 4. Distribution of velocity against n when A = 0 and Pra = 0.1: solid
line, present work: dashed line, [1].

Fig. 5. Distribution of temperature against n when A = 0 and Pra = 0.1:
solid line, present work: dashed line, [1].



Fig. 6. Distribution of temperature against n when A = 0 and M = 1:
solid line, present work: dashed line, [1].

Fig. 7. Distribution of temperature against n when A = 0 and M = 0:
solid line, present work: dashed line, [1].
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very well with the profiles of the analytical solution. How-
ever large differences exist between our profiles and those
of Mukhopadhyay et al. [1]. It is seen that the real temper-
ature profiles, calculated by the present method, are much
wider than those calculated by Mukhopadhyay et al. [1]. It
is obvious that the temperature profiles by Mukhopadhyay
et al. [1] are truncated due to a small calculation domain
used. Apparently the authors used a calculation domain
(gmax) that is much smaller than the temperature boundary
layer thickness. It is well known in the boundary layer the-
ory that large Prandtl numbers correspond to thin temper-
ature profiles and small Prandtl numbers to wider
temperature profiles. The calculation domain that they
used was sufficient to capture the velocity profiles but insuf-
ficient to capture the temperature profiles for this small
Prandtl number (0.1). Chiam [10], in order to get accurate
results for the same Prandtl number (0.1), used a calcula-
tion domain equal to 165 which is 33 times larger than that
used by Mukhopadhyay et al. (gmax = 5). Very large values
of g have been used also in the present work to capture the
very wide temperature profiles. The omission of Mukho-
padhyay et al. to compare their results with those existing
in the literature led to this disadvantage.

As was mentioned before the second disadvantage of the
published work is the assumption that the Prandtl number
is constant in the energy equation and equal to ambient
Prandtl number. This is a wrong assumption. For example
the dependence of Pr number on temperature for air is
given by the following equation [14]:

Pr ¼ 1:0677� 10�23T 7� 7:6511� 10�20T 6þ 1:0395� 10�16T 5

þ 4:6851� 10�13T 4� 1:7698� 10�9T 3þ 2:2260� 10�6T 2

� 1:1262� 10�3T þ 0:88353 for 100 K < T < 3000 KÞ
ð22Þ

For water the Pr number depends on temperature accord-
ing to the following equation [15]:

Pr ¼ 13:66=ð7:4779458t4 � 68:8626188t3

þ 197:7604676t2 � 208:7474538t þ 73:376906Þ ð23Þ

where t = T/273.16 and 273.16 < T < 373.16 K. The above
equations have been derived taking into account the varia-
tion of all fluid properties (l, k, cp) with temperature. The
variation of air and water Pr number with temperature is
shown in Figs. 8 and 9, respectively.

Mukhopadhyay et al. [1] used a hypothetical fluid whose
viscosity l is a linear function of temperature (Eq. (6)) and
the other fluid properties constant. For this hypothetical
fluid the variation of Pr number inside the boundary layer
is shown in Fig. 10. The real Pr number (solid line) has
been calculated as follows: We solved directly Eqs. (1)–
(3) using the finite difference method of Patankar and we
calculated the velocities and temperatures across the
boundary layer for Pra = 1. Knowing the temperature
across the boundary layer we calculated the viscosity l
from Eq. (6) and the Pr number from Pr = l/qj (q and
j constant). It is seen that the real Pr number is much smal-
ler than the ambient one. Turning now to Fig. 3 we see that
the temperature profiles by Mukhopadhyay et al. [1] for
A = 0 and A = 0.7 are almost identical whereas the corre-
sponding profiles of the present work differ significantly.
Our profile for A = 0.7 is much thicker than that of
A = 0 because in our method both viscosity and Prandtl



Fig. 8. Variation of air Prandtl number with temperature.

Fig. 9. Variation of water Prandtl number with temperature.

Fig. 10. Variation of Prandtl number across the boundary layer for
Pra = 0.1: solid line, present work: dashed line, [1].
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number are considered variable inside the boundary layer.
The real Prandtl number near the plate is small and this
leads to a wider temperature profile according to the
boundary layer theory (large Prandtl numbers correspond
to thin temperature profiles and small Prandtl numbers
correspond to wider temperature profiles). It is difficult to
find out the real reason that the two temperature profiles
by Mukhopadhyay et al. [1] are identical because both pro-
files have been truncated. However the assumption of con-
stant Prandtl number in the energy equation may lead to
severe errors, especially when the variation of viscosity
with temperature is strong, as was pointed out by Pantok-
ratoras in three recent papers [16–18].
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